
Data Caching, Garbage
Collection, and the Java

Memory Model

Wolfgang Puffitsch
wpuffits@mail.tuwien.ac.at

JTRES ’09, September 23-25, 2009 1 / 24

wpuffits@mail.tuwien.ac.at

Motivation I

I Sequential consistency is expensive
I Multi-processors often implement

relaxed memory models
I JMM is a logical choice for a Java

processor

2 / 24

Motivation II

I JMM specifies memory model for
application

I JMM is agnostic of run-time system
I Minimal communication between

application and GC
I Asymmetric synchronization

3 / 24

The Java Memory Model

I Happens-before relation
I Similar to lazy release consistency
I Allows various optimizations
I Rules out a number of odd behaviors

I Causality must be obeyed

4 / 24

Surprising Behavior

int x = 0;
Thread T1 Thread T2
int r1 = x; int r2 = x;
x = 1; x = 2;

Java memory model allows r1==2, r2==1

5 / 24

Data Cache Implementation I

I Implemented for JopCMP
I Predictable, low HW cost
I Follows idea of lazy release consistency
I Invalidate cache on monitorenter and

volatile reads
I Write-through cache

6 / 24

Data Cache Implementation II

I No global store order
I Accesses cannot bypass each other

locally
I Relatively simple memory model

I Good predictability
I Consistency actions are always local

7 / 24

Moving Objects
I Only minimal communication between

application and GC
I Avoid synchronization overhead for

reads
I How to force application to see moved

objects?
I Invalidate cache for each moved object
I Stronger memory model
I Avoid movement of objects

8 / 24

GC Algorithms – GC Cycle
void runGC () {

// i n i t i a t e new GC c y c l e
s t a r t C y c l e () ;
// r e t r i e v e r o o t s
ga the rRoo t s () ;
// t r a c e the o b j e c t graph
t r a c eOb j e c tG raph () ;
// c l e a r o b j e c t s t ha t a r e s t i l l wh i t e
sweepUnusedObjects () ;
// o p t i o n a l memory de f r a gmen t a t i o n
de f ragment () ;

}

9 / 24

Tricolor Abstraction

I White objects have not been visited
I Gray objects need to be visited
I Black objects have been visited
I After tracing, reachable objects are

black and white objects are garbage

10 / 24

GC Algorithms – Tracing
void t r a c eOb j e c tG raph () {

// w h i l e t h e r e a r e s t i l l g r ay o b j e c t s
while (! g r a yOb j e c t s . i sEmpty ()) {

// get a g ray o b j e c t
Object ob j = g r a yOb j e c t s . r e m o v e F i r s t () ;
// i t e r a t e ove r a l l r e f e r e n c e f i e l d s
fo r (F i e l d f i n g e t R e f F i e l d s (ob j)) {

Object f i e l d V a l = g e t F i e l d (obj , f) ;
// mark r e f e r e n c e d o b j e c t s
i f (c o l o r (f i e l d V a l) == wh i t e) {

markGray (f i e l d V a l) ;
}

}
markBlack (ob j) ;

}}
11 / 24

GC Algorithms – Write Barrier

void p u t F i e l d R e f (Objec t obj , F i e l d f ,
Ob jec t newVal) {

// snapshot−at−be g i n n i n g b a r r i e r
Object o l dVa l = g e t F i e l d (obj , f) ;
i f (c o l o r (o l dVa l) == wh i t e) {

markGray (o l dVa l) ;
}
// w r i t e new v a l u e to f i e l d
p u t F i e l d (obj , f , newVal) ;

}

12 / 24

Tracing Requirements

The object graph can be traced correctly if
I a snapshot-at-beginning write barrier is

used, and
I new objects are allocated non-white, and
I a consensus is established at the

beginning of tracing

13 / 24

Tracing – Justification

I Objects must either be reachable from
snapshot or newly allocated

I Differences in object graph views must
stem from updates ⇒ write barrier

I Concurrent updates must see snapshot
I Works for our cache implementation
I Not guaranteed in JMM!

14 / 24

Tracing – JMM Counterexample

x.f == A;
Thread T1 Thread T2
Obj o1 = x.f; Obj o2 = x.f;
... ...

x.f = B; x.f = C;

Java memory model allows o1==C, o2==B!

15 / 24

Sliding Consensus

I Consensus is established by invalidating
all caches

I How to make this non-atomically?
I Sliding view root scanning
I Invalidate cache at root scanning

I Assuming double-barrier
I Both old and new value are shaded

16 / 24

Start of GC Cycle – Requirements

I Field updates from earlier GC cycles
must be visible to write barriers of new
GC cycle

I Field updates from earlier GC cycles
must be visible to root scanning

I Field updates from earlier GC cycles
must be perceived consistently

17 / 24

Start of GC Cycle – Consequences

I Clear separation of GC cycles
I Threads that are preempted while

executing a write barrier delay start of a
GC cycle

18 / 24

Start of GC Cycle – Future work

I Costs of implementation choices to be
evaluated

I Avoid overlap of old and new barriers
I Handshake or mutual exclusion

I Enforce consistent perception in
write-barrier

I Bypass cache or cache invalidation

19 / 24

Object Initalization
I Threads must see default values
I Avoid synchronization between

allocation and potential uses
I Memory must not have been in use

since last GC cycle
I Cache invalidation at GC cycle start ⇒

Cache cannot contain stale values
I Analogue consideration for final values

20 / 24

Internal Data Structures

I Inter-thread communication of GC
algorithm

I Internal data structures can follow own
memory model

I E.g., bypass cache
I Avoids merging application and run-time

synchronization
I Depends on capabilities of platform

21 / 24

Conclusion I

I Cache that is consistent with JMM
I Moving of objects needs consistency

enforcement
I Tracing works if JMM surprising

behavior is avoided
I Start of GC cycle requires careful design

22 / 24

Conclusion II

I Object creation simple in some cases
I Run-time system synchronization can be

separated from application
synchronization

23 / 24

Thank you for your attention!

24 / 24

